How much security do we gain from Trusted Computing?

My colleague Jan is going to present our paper Attacking the BitLocker Boot Process at Trust 2009 (Oxford, 6th – 8th April). The paper is an improved version of the draft we presented at ETISS.

BitLocker is the volume encryption function built into recent versions of MS Windows. It is capable of using a Trusted Platform Module if the PC has one. Our paper describes five attack scenarios that using the TPM does not prevent from succeeding. Some are based on particular features of BitLocker while others rely on the implementation of authenticated booting that is currently used in Trusted Computing.

All five scenarios seem suitable for targeted attacks and require that the attacker can access the target system twice. Executing such attacks is thus roughly as complex as installing a hardware keylogger in the system and returning later to retrieve the sniffed password along with the encrypted data – or just the machine in a condition that permits decrypting the data on disk.

What makes our attacks interesting is the fact that they can be implemented in software. Ideally, Trusted Computing should reliably prevent such attacks from succeeding. However, a TPM does not prevent software from being modified. The TPM only compares measured states with stored reference data. This leaves several holes. For instance one can temporarily modify software and later restore the reference state, or modify boot components before the reference state is determined and stored inside the TPM. While such actions are useless in an opportunisitc attack where the attacker just grabs an unattended machine unprepared, a dedicated attacker might take advantage of them.

Update 2009-12-03: There is a more comprehensive explanation in a later post.

One thought on “How much security do we gain from Trusted Computing?

Comments are closed.